

HyPowerGT

Public presentation

Project funded by

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

The HyPowerGT project is supported by the Clean Hydrogen Partnership and its members (GA 101136656) and the Swiss Federal Department of Economic Affairs, Education and Research, State Secretariat for Education, Research and Innovation (SERI).

Swiss Confederation

HyPowerGT

Hydrogen-Powered Gas-Turbine engine fuelled

with up to 100% H₂

Image courtesy of Baker Hughes. Copyright 2024 Baker Hughes Company. All rights reserved

Project funded by

HyPowerGT in a nutshell

Figures and facts

HyPowerGT Objectives

Objectives

- To provide a safe and efficient low-emission H₂ combustion system retrofittable to gas-turbine engines in the 10-20 Mwe class
- To demonstrate operating capabilities, as well as compliance with NO_x regulations, of a simple-cycle gas turbine at full operating conditions with fuel compositions mixed with hydrogen **up to 100%** H_2
- To present pathways for decarbonised power generation through retrofits and uptake of project's results

HyPowerGT main impacts

CO2 free operation, low NOx gas turbine

• HyPowerGT will offer an innovative solution for the energy transition: a CO₂ free operation gas **turbine** with low NO_x emissions that represents the cleanest possible gas turbine configuration on the market

Green technology

• The low NO_x target will be obtained working on the DLE combustion technology, neither using diluents, nor catalysts in the gas turbine exhaust or reducing the gas turbine's thermodynamic efficiency by lowering the combustor exit temperature

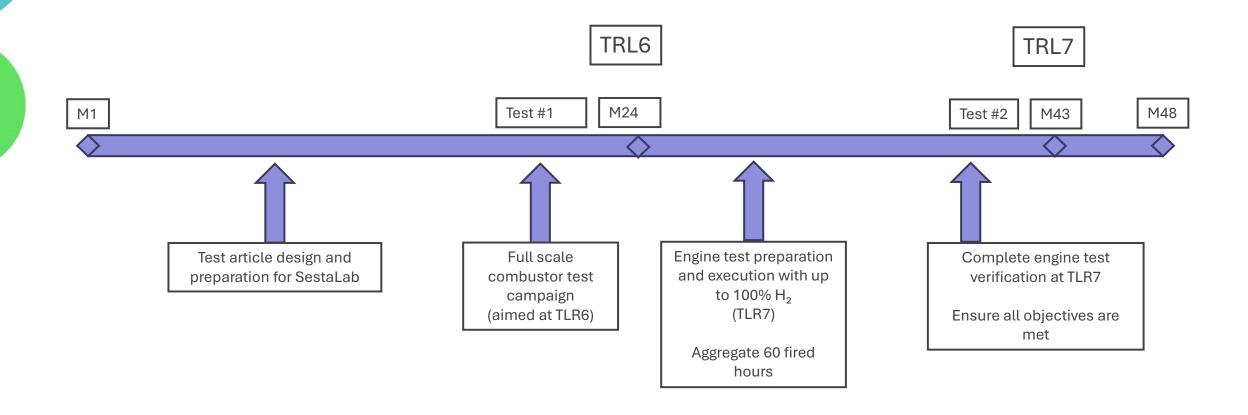
HyPowerGT main impacts

Gas turbine fuel flexibility

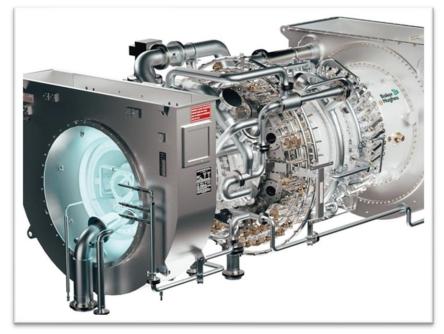
• The project will demonstrate, by means of engine test campaigns, the ability to burn any blend of **natural gas and hydrogen** up to pure H₂, from start-up and with a switching ability at any load.

Supporting EU climate neutral targets

- HyPowerGT will contribute significantly to the, proposing through a technology development up to TRI 7 a concrete market solution **Green Deal**
- Energy transition will be fostered through the retrofittability on existing natural gas and CHP applications.



HyPowerGT project timeline



HyPowerGT main developments

DLE H₂ combustor technology

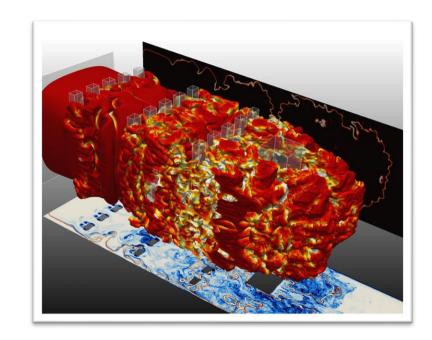
The system will be verified at TRL6 by testing in an instrumented annular combustor rig, operated at engine representative conditions of pressure and temperature

To complete the design verification at TRL 7, the DLE H_2 combustor will be introduced in the instrumented prototype engine and tested at all the mission conditions, operating up to rated power (16.9 MWe) and with a minimum of 60 testing hours.

Baker Hughes NovaLTTM16 gas turbine, 100% H2 ready (*)

NovaLT™ is a trademark of Baker Hughes and its affiliates. All right reserved

Image courtesy of Baker Hughes. Copyright 2024 Baker Hughes Company. All rights reserved



HyPowerGT main developments

Safety handling

An assessment for retrofitting the DLE H₂ gas turbines and a complementary risk analysis related to health, safety, and environment assessment will be performed.

A safety management plan will be ultimately developed, with the aim of enabling operation of retrofitted GTs with up to 100% H₂ and certifying the NovaLT™16 DLE H₂ product.

Advanced numerical simulation of a venting duct deflagration scenario*

*Dr. D. Barré, CERFACS

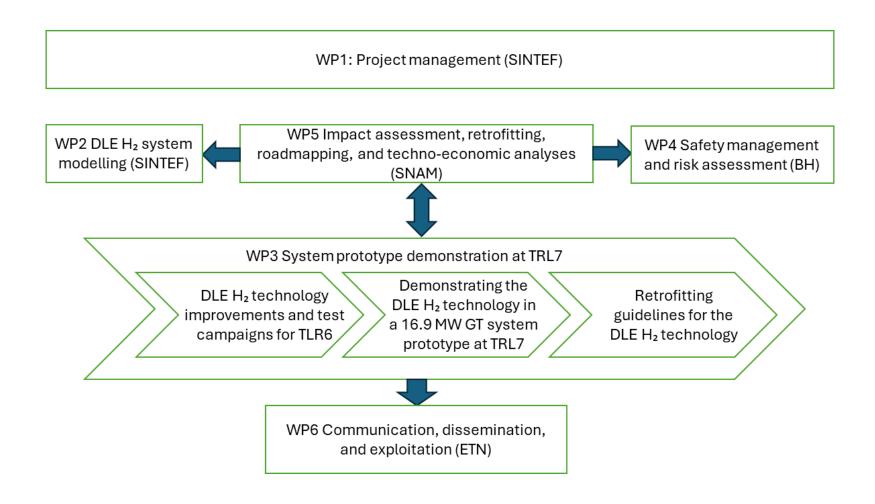
HyPowerGT main developments

Retrofitting and techno-economic roadmap

- The HyPowerGT project will conduct a comprehensive assessment of the market potential for DLE H₂ technology
- **Techno-economic analyses** of midstream hydrogen turbo-compressor stations, industrial cogeneration facilities, and broader energy system solutions will be carried out
- An exploitation roadmap will be formulated, designing strategic pathways for spreading the DLE H₂ technology's potential. This roadmap will address the requisite R&D efforts
- An **analysis of regulatory frameworks** will be conducted to identify gaps and opportunities that could facilitate the widespread deployment of the technology

HyPowerGT consortium

A consortium of **nine** project partners, from **five** different European countries



HyPowerGT Work Packages

Thank you for your attention

info@hypowergt.eu

Project funded by

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education.

Research and Innovation SERI